The number of k-simplices
in the barycentric subdivision of an n-simplex
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1. Introduction

Topology is a new field in mathematics whose
concept was established in the 20th century.
Homology which defined by H. Poincare [1] is
one of the important tools of topology. What is
needed to define homology is a simplex. There
are several theorems that use the simplices, and
one of the important theorems is the simplicial
approximation theorem [2]. Any continuous maps
between polyhedra are approximated as a morphism
of simplices via the barycentric subdivision of the
polyhedra.

Although simplices and its barycentric subdivisions
are basic terms, almost no mention is made of the
number of simplices. The purpose of this research is
to determine calculate the number of k-simplices in

the barycentric subdivision of an n-simplex.

2. Main Theorem

Definition 2.1. (simplices) Let N and n be natural
numbers with n < N, and ay, a; ... an € RV, If the set
of vectors a; —ay,., A, — Ay is linearly independent,
then we call the following an n-simplex.

0 =lapay - ayl

n n
={Zliai ERN|ZA,:=1,).,ZZO}
i=0 i=0

For example, a 0-simplex, a 1-simplex, a 2-simplex, a
3-simplex are a point, a line segment, a triangle and a

tetrahedra, respectively.

az az iy
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[ag| |apay| |apa;ag| |apayazas)|

The standard n-simplices A™ is defined by,

n
A= {(xo,xl, v Xp) € RTL in =landx; > 0}.
i=0

Let 0 = |aga; - an| be an n-simplex. Then for all
subset {ai,, ai,, ... a;,} of {ag,ai, ..., an},

T =aa;, -+ ag,|

is also simplex. In this case, t is called faces of ¢ and

writen by t <o.
Definition 2.2. (simplicial complexes) A set K of

simplices is a simplicial complex if and only if K

saticefies the followings:
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(1) €K, 7<0 = TEK.
(2 o,1€K,oNt#¢ = oNt<o,0NT<T.

A polyhedron of simplicial complexes, denotes as

|K|, is the union of its simplices.

k1= Jo.

gEK

Definition 2.3. (barycentric subdivisions) Let

o = |aga, -+ ay| be an n-simplex. The centroid by of

o is denoted by

n
1
b°=n+1zai'

=0

The barycentric subdivision of o is the following
simplicial complex:

Sd(0) = {|bs, = bo,,| | # 06 < 01 << Oy < 0}

Example 2.4.
(1) Sd(la,) = {Ibol3},

(2 Sd(lasas]) = {Ibol, |11, [bo1l, bobo1l, |b1bgs |},

| Bty | |By by |
[ ] [ L ] L ]
| o bl |Bor| |l

1
where by = ay, b1 = a1 and bo1 = 5(“0 +ay).

We define the number #SdA™(k) to be the number

of k-simplices in the barycentric subdivision of A™.

The purpose of this paper is to determine #SdA™(k).

Theorem 2.5. The number of the k-simplices in the
barycentric subdivision of the n-simplex A™ is

k+2

;(_1)k+i (lki' :;) in+1'

Example 2.6. We understand the followings from

RN

|SdA?|  |sdAl| |SdA?|

figures.
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Table 1: #Sd A" (k)

n\k]O0|1]2]3
0 |1

1 |32

2 [ 7 [12] 6

3

15150 | 60 | 24

Via the binomial theorem, it is easy to show the

following example.

Example 2.7. For any n,

#SdAm(0) = 2m+1 — 1,

3. Proof of Main Theorem

The We define the number #SdoA™(k) and
#3d IntA™(k) to be the number of k-simplices of
SdA™ which appers in the boundary of A™ and inside
of A™, respectively. This notation means

#SdA™ (k) = #SdaA™ (k) + #Sd IntA™ (k)

Table 2: #Sd 9 A" (k) Table 3: #Sd IntA” (k)

n\k] 0| 1]2]3 n\k[O| 1]2]3
0 0 |1

1 ]2 T [1]2

2 66 2 [1]6]6

3 | 1436 24 3 [1]14]36]24

Moereover, formally defined as

#SdoAm(—1) = 1.

In the interior of A™, there exists a unique
0-simplex of SAA™. Therefore the number of k-
simplices of SAA™ inside A™ matches the number of
(k — 1)-simplices of SdA™ in the boundary of A™. In

other words, for any 0 < k < n
#Sd IntA" (k) = #SdoA™(k—1).

On the other hand, consider the number of the k-

simplices of SAA™ in the boundary of A™.

3
-

#SdoA™ (k) =
Jj

(n+1

N 1)#Sd IntA] (k)

I
=

[y

n—

n+1 ;
= Z (1‘+ 1)#SdaA1(k ~1)

=k



+1 . . .
where (7 n 1) denotes a binomial coefficient.

In order to prove Theorem 2.5., we use the

following proposition.

Proposition 3.1. For any 1 < k < n, define
L, (k=1)
A( k) n-1
nk) = n , .
‘ZI(].) AG k- 1), k> 2)
e

Then we obtain

k
A(n k) = Z(—nk“‘ (’l‘) in
i=1

In this case, A(n, k) defines as follows.
A(n, k) = #SdoA™ 1(k — 2)

Actually
Aln, k)
= #SdoA™ 1 (k - 2)
1, (k=1)
n-2
z ]+ 1) #8400 (k - 3),
j=k—

2

(k=2)

1, (k=1)

(;‘) #SdaN1(k—3), (k=2)

k-1

1, (k=1)
n-1
)Y (ak-n, k=
j=k-1

Then we can apply Proposition 3.1. to this case.

#SdA™ (k)

#SdoA™ (k) + #SdaA™(k — 1)

= An+1k+2) + A+ 1,k+1)

k+2
i k+2\ n+1
— Z(_l)k+z+2 ( ; ) in+
i=1 L
k+1
i k+1)\ .
+ Z(_l)k+l+1 ( ; ) n+1
i=1 t
k+2

- S (1) - (£ e

L
i=1

k+2

— ;(_1)1(,“‘ (lki' 11) in+1,

k+1

where (k+2

) = 0. We have the result.

4. Proof of Proposition 3.1.
In this section, we prove Proposition 3.1. First, we

prepare the following lemma.

Lemma 4.1. For any 0 < j < k—1,

k
S ()0 -
i=1

Proof. When j =0,

> () -

induces the claim.

Next, we consider the case of j = 1. Assume that

k

Z(—l)" (’l‘) ‘=0, 0<¢<k-1).

i=1

Then forany 1 <j < k,

k+1

> (1)

k+1

k
=Sy ()Y en () @
i=1 i=1

Z( i (

) (+1) + Z( ! (

k

=-1- Z(—1)i () e+ - v)

i=1

K Jj-1
T L
— 1 — _1\i+j-s-1 s ij—s—1
-1 ZZ( 1 (%) @+
i=1s=0
j-1 s
_ _yitj—s—1 (kY (SY ;j-s+t-1
=-1- Z o (5) () o
i=1s=0t=0
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N

i: oG }} v (

11 s+t—1,

Because 0 < j—s+t—-1<j—-1<k-1, we see
that j—s+t—1=0 if and only if (s,t) =( —1,0).
Then

k

O\ eveet  (~L((s,60) = (i = 1,0
Z(_l)l (lf) gt = { o,((((;,tt))¢ ((;—1,0))))'

i=1

Therefore,

k+1

(e

-1 s k
=-1— (1)1 (=1 j-s+t-1
5=0t=0 ( ); ( )l
——1-(-1)
=0.

(g.e.d)

Remark 4.2. See (*) in the proof of Lemma 4.1. Note
that when j =k,

k

Z( 1)1()11;&0

i=1

Proof of Proposition 3.1. We prove the assertion as
introduction argument on n. Suppose 2 < k < n
and the statement holds for less than n = 1. Then we

obtain

A(n, k)

n—-1 k-1
(=1)k+i- 1 k_l) iJ
—-1i=1

I
&=

j

k-1 n—1
Z(_l)k+i—1 (k : 1) < Gl) l'f)
= i
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DX >(°+1>”-z —'i(?)v)

Jj=0

k-1
- Z(—nk*i-l (T hHa+or
k-1
_ Z(_Dkuq (k 1) i
i=1
k=1k=2 K1\
— Z(_l)kﬂ'—l ( : )(]) i
i=1 j=0
k k-1
— Z( 1)k+l (k 1) in o+ Z( 1)k+t (k 1) in
k=2 k=1
Y () Yot e
=0 i=1

+ (=1)k+ (k I 1) + (=1)k+1

k
— ;(_1)k+i (’:) in

(q.e.d)
A. Appendix
By definition A(n, k) written in Proposition 3.1, we
have
A(n,n) = (n E 1) An—1,n-1).
Then,

Therefore, Lemma 4.1. is expanded to the following.

Proposition A.l. For any k=>21,0 < j < k,

K 1, (G=0)
Z(—ni (i =10 1<j<k-1)
= ! (-D*k!, (j=k)
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